organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zwitterionic 2-{[3-(1*H*-indol-3-yl)propenyl]methylammonio}phenolate

Hapipah M. Ali, Omar Emmy Maryati and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 3 July 2007; accepted 4 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.125; data-to-parameter ratio = 15.8.

The title Schiff base, $C_{19}H_{20}N_2O$, exists in its zwitterionic form, as the phenolic H atom has been transferred to the iminio group; the resulting iminium and hydroxy groups are linked by an intramolecular $N-H\cdots O$ hydrogen bond. Two zwitterions lie across a centre of inversion and interact through two $N_{indole}-H\cdots O$ hydrogen bonds to form a dimer.

Related literature

See Rodriguez *et al.* (1987) for the crystal structure of neutral 2-[2-(1*H*-indol-3-yl)ethyliminomethy]phenol (1*H*-indole-3-ethylenesalicylaldimine) and Zarza *et al.* (1988) for the crystal structure of zwitterionic 2-[2-(1*H*-indol-3-yl)ethyliminomethyl]-6-methoxyphenol.

Experimental

Crystal data

 $C_{19}H_{20}N_2O$ $M_r = 292.37$ Monoclinic, $P2_1/n$ a = 13.5170 (2) Å

L = 0.5770(1) Å
D = 8.3778(1) A
c = 14.4551 (2) A
$\beta = 114.619 \ (1)^{\circ}$
V = 1523.66 (4) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector	4406 independent reflections
diffractometer	3516 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.036$
23521 measured reflections	

T = 173 (2) K

19 restraints

 $\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

All H-atom parameters refined

 $0.35 \times 0.26 \times 0.21 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.126$ S = 1.014406 reflections 279 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

Hydrogen-bond geometry (A, ⁺).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N1-H1n\cdots O1$ 0.90 (1)1.66 (1)2.487 (1)151 (2) $N2-H2n\cdots O1^i$ 0.89 (1)1.93 (1)2.807 (1)168 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the University of Malaya (grant No. F0263/2007B) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2472).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12a). Bruker AXS Inc., Madison, Wisconsin, USA.

Rodriguez, M. L., Medina de la Rosa, E., Gili, P., Zarza, P. M., Reyes, M. G. M., Medina, A. & Díaz González, M. C. (1987). Acta Cryst. C43, 134–136.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Westrip, S. P. (2007). publCIF. In preparation.
- Zarza, P. M., Gill, P., Díaz González, M. C., Martin Reyes, M. G., Arrieta, J. M., Nastopoulos, V., Germain, G. & Debaerdemaeker, T. (1988). *Acta Cryst.* C44, 678–681.

supplementary materials

Acta Cryst. (2007). E63, o3458 [doi:10.1107/81600536807032643]

Zwitterionic 2-{[3-(1H-indol-3-yl)propenyl]methylammonio}phenolate

H. M. Ali, O. Emmy Maryati and S. W. Ng

Comment

Some Schiff bases that are formed from a primary amine and a substituted salicylaldehyde (or 2-hydroxyacetophenone) exist in a zwitterionic form as the phenolic hydrogen is transferred to the imino group. Among the (indol-3-yl)ethyl-2-amine derivatives that have been synthesized, the crystal structures of only two have been reported: 2-[2-(1H-Indol-3-yl)ethyl] whereas 2-[2-(1H-indol-3-yl)ethyl]-6-methoxyphenol is zwitterionic (Zarza *et al.*, 1988). The title compound, (I), (Fig. 1) exists in the latter form; two zwitterions are linked by an N_{indole}–H···O hydrogen bond (Table 1) into a dimer.

Experimental

2-(Indol-3-yl)ethylamine (3.2 g, 19.9 mmol) and 2-hydroxy-5-methylacetophenone (3.0 g, 19.9 mmol) were heated in ethanol (50 ml) for 2 h. The solution was filtered; slow evaporation of the solvent yielded faint yellow blocks of (I).

Refinement

All hydrogen atoms were located in difference Fourier maps, and were refined with distance restraints C—H = 1.00 ± 0.01 Å and N–H = 0.88 ± 0.01 Å. Their U_{iso} values were freely refined.

Figures

Fig. 1. View of (I) shoiwng the hydrogen-bonded dimer; displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radius. The dashed lines denote hydrogen bonds. [Symmetry code *i*: 1 - x, 1 - y, 1 - z.]

2-{[3-(1H-indol-3-yl)propenyl]methylammonio}phenolate

Crystal data	
C ₁₉ H ₂₀ N ₂ O	F_{00}
$M_r = 292.37$	D _x
Monoclinic, $P2_1/n$	$M \alpha$ $\lambda =$
Hall symbol: -P 2yn	Cel
a = 13.5170 (2) Å	$\theta =$
b = 8.5778 (1) Å	μ =

 $F_{000} = 624$ $D_x = 1.275 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7004 reflections $\theta = 2.7-31.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

supplementary materials

c = 14.4551 (2) Å
$\beta = 114.619 (1)^{\circ}$
$V = 1523.66 (4) \text{ Å}^3$
Z = 4

Data collection

T = 173 (2) K Block, pale yellow $0.35 \times 0.26 \times 0.21$ mm

Bruker APEXII CCD area-detector diffractometer	3516 reflections with $I > 2\sigma(I)$
Radiation source: medium-focus sealed tube	$R_{\rm int} = 0.036$
Monochromator: graphite	$\theta_{\text{max}} = 30.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 1.7^{\circ}$
φ and ω scans	$h = -19 \rightarrow 18$
Absorption correction: none	$k = -12 \rightarrow 11$
23521 measured reflections	$l = -20 \rightarrow 20$
4406 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	All H-atom parameters refined
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0734P)^2 + 0.3723P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
4406 reflections	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
279 parameters	$\Delta \rho_{\rm min} = -0.23 \ e \ {\rm \AA}^{-3}$
19 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O1	0.33096 (6)	0.49058 (9)	0.57718 (6)	0.02106 (18)
N1	0.23306 (7)	0.23687 (10)	0.53951 (7)	0.01704 (19)
N2	0.49741 (8)	0.32926 (11)	0.42664 (8)	0.0209 (2)
C1	0.25791 (9)	0.54412 (12)	0.60614 (8)	0.0171 (2)
C2	0.26495 (9)	0.69894 (12)	0.64407 (9)	0.0205 (2)
C3	0.18869 (9)	0.75560 (13)	0.67537 (9)	0.0217 (2)
C4	0.10061 (9)	0.66421 (13)	0.67272 (8)	0.0207 (2)
C5	0.09244 (9)	0.51336 (13)	0.63649 (8)	0.0187 (2)
C6	0.16864 (8)	0.45039 (12)	0.60263 (8)	0.0162 (2)
C7	0.01783 (11)	0.73171 (16)	0.70630 (10)	0.0289 (3)
C8	0.15994 (8)	0.28929 (12)	0.56854 (8)	0.0156 (2)
C9	0.07030 (9)	0.18642 (13)	0.56894 (9)	0.0208 (2)
C10	0.24093 (9)	0.07834 (12)	0.50569 (9)	0.0202 (2)

C11	0.35855 (9)	0.04142 (13)	0.52407 (9)	0.0199 (2)
C12	0.47967 (9)	0.25886 (13)	0.50420 (9)	0.0199 (2)
C13	0.40163 (9)	0.14509 (12)	0.46586 (8)	0.0176 (2)
C14	0.36938 (9)	0.14302 (12)	0.35741 (9)	0.0179 (2)
C15	0.29601 (10)	0.05272 (14)	0.27707 (9)	0.0245 (2)
C16	0.28554 (10)	0.08129 (17)	0.17906 (10)	0.0288 (3)
C17	0.34742 (10)	0.19798 (16)	0.15950 (10)	0.0280 (3)
C18	0.42114 (10)	0.28781 (14)	0.23730 (10)	0.0238 (2)
C19	0.43160 (9)	0.25923 (12)	0.33626 (9)	0.0188 (2)
H1N	0.2810 (13)	0.3128 (17)	0.5431 (15)	0.050 (5)*
H2N	0.5501 (11)	0.3947 (16)	0.4316 (12)	0.034 (4)*
H2	0.3273 (10)	0.7633 (16)	0.6463 (12)	0.031 (4)*
Н3	0.1963 (13)	0.8649 (11)	0.7016 (11)	0.030 (4)*
H5	0.0309 (9)	0.4469 (15)	0.6345 (11)	0.025 (4)*
H7A	-0.0255 (14)	0.8188 (18)	0.6613 (13)	0.056 (6)*
H7C	0.0516 (13)	0.7826 (19)	0.7746 (9)	0.041 (5)*
H7B	-0.0326 (14)	0.6505 (19)	0.7118 (15)	0.059 (6)*
H9A	0.0684 (16)	0.0850 (15)	0.5364 (14)	0.058 (6)*
H9B	0.0804 (15)	0.168 (2)	0.6398 (8)	0.050 (5)*
Н9С	-0.0012 (9)	0.2380 (18)	0.5348 (11)	0.037 (4)*
H10A	0.2141 (12)	0.0024 (15)	0.5416 (11)	0.030 (4)*
H10B	0.1942 (10)	0.0725 (16)	0.4313 (7)	0.019 (3)*
H11A	0.3595 (11)	-0.0698 (11)	0.5031 (11)	0.024 (4)*
H11B	0.4061 (10)	0.0464 (17)	0.5990 (7)	0.023 (4)*
H12	0.5225 (11)	0.2920 (18)	0.5761 (7)	0.028 (4)*
H15	0.2513 (11)	-0.0278 (14)	0.2920 (11)	0.027 (4)*
H16	0.2377 (15)	0.019 (2)	0.1234 (14)	0.042 (5)*
H17	0.3362 (13)	0.2144 (19)	0.0881 (8)	0.036 (4)*
H18	0.4634 (11)	0.3714 (14)	0.2233 (11)	0.028 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0195 (4)	0.0183 (4)	0.0292 (4)	-0.0025 (3)	0.0139 (3)	0.0005 (3)
N1	0.0173 (4)	0.0148 (4)	0.0217 (5)	-0.0016 (3)	0.0108 (4)	0.0008 (3)
N2	0.0194 (4)	0.0180 (4)	0.0297 (5)	-0.0038 (3)	0.0145 (4)	-0.0009 (4)
C1	0.0174 (5)	0.0168 (5)	0.0157 (5)	-0.0003 (4)	0.0054 (4)	0.0030 (4)
C2	0.0211 (5)	0.0168 (5)	0.0207 (5)	-0.0025 (4)	0.0059 (4)	0.0002 (4)
C3	0.0238 (6)	0.0188 (5)	0.0170 (5)	0.0015 (4)	0.0029 (4)	-0.0017 (4)
C4	0.0198 (5)	0.0239 (5)	0.0155 (5)	0.0040 (4)	0.0045 (4)	-0.0018 (4)
C5	0.0166 (5)	0.0215 (5)	0.0173 (5)	0.0001 (4)	0.0064 (4)	-0.0012 (4)
C6	0.0159 (5)	0.0168 (4)	0.0154 (5)	-0.0003 (4)	0.0060 (4)	0.0005 (4)
C7	0.0262 (6)	0.0339 (6)	0.0265 (6)	0.0061 (5)	0.0108 (5)	-0.0076 (5)
C8	0.0149 (5)	0.0177 (5)	0.0143 (5)	-0.0015 (3)	0.0061 (4)	0.0007 (4)
C9	0.0189 (5)	0.0214 (5)	0.0262 (6)	-0.0056 (4)	0.0133 (5)	-0.0043 (4)
C10	0.0209 (5)	0.0152 (5)	0.0294 (6)	-0.0022 (4)	0.0155 (5)	-0.0013 (4)
C11	0.0204 (5)	0.0172 (5)	0.0265 (6)	0.0019 (4)	0.0142 (5)	0.0033 (4)
C12	0.0181 (5)	0.0191 (5)	0.0249 (6)	0.0001 (4)	0.0114 (4)	-0.0012 (4)

supplementary materials

C13	0.0161 (5)	0.0162 (4)	0.0232 (5)	0 0008 (4)	0.0110.(4)	0 0004 (4)
C14	0.0161(5)	0.0102(4)	0.0232(5)	0.0008(4)	0.0110(4)	0.0004(4)
C15	0.0100(5)	0.0172(5)	0.0234(5)	-0.0033(4)	0.0110(4)	-0.0040(5)
C16	0.0200(5)	0.0207(0)	0.0231(0) 0.0249(6)	0.0033(4)	0.0120(5)	-0.0059(5)
C10 C17	0.0230(0)	0.0374(7)	0.0249(0)	0.0004(5)	0.0075(5)	0.0057(5)
C17	0.0274(0) 0.0231(5)	0.0370(7)	0.0239(0)	0.0099(3)	0.0148(3) 0.0179(5)	0.0050(5)
C18	0.0231(3)	0.0232(3)	0.0300(0)	0.0001(4)	0.0179(3)	0.0003(3)
019	0.0105 (3)	0.0172 (3)	0.0201 (0)	0.0023 (4)	0.0122 (4)	0.0018 (4)
Geometric param	neters (Å, °)					
01—C1		1.3059 (13)	C9—H	19A	0.984	(9)
N1—C8		1.3041 (13)	C9—H	19B	0.989	(9)
N1-C10		1.4638 (14)	С9—Н	19C	0.988	(9)
N1—H1N		0.905 (9)	C10—	-C11	1.531	9 (15)
N2—C19		1.3750 (15)	C10—	-H10A	0.991	(9)
N2—C12		1.3795 (15)	C10—	-H10B	0.995	(8)
N2—H2N		0.886 (9)	C11—	-C13	1.498	6 (14)
C1—C2		1.4247 (15)	C11—	-H11A	1.003	(9)
C1—C6		1.4332 (14)	C11—	-H11B	1.004	(8)
C2—C3		1.3755 (16)	C12—	-C13	1.373	0 (15)
С2—Н2		0.997 (9)	C12—	-H12	0.998	(9)
C3—C4		1.4127 (16)	C13—	-C14	1.441	8 (16)
С3—Н3		1.001 (9)	C14—	-C15	15 1.4045 (16)	
C4—C5		1.3830 (15)	C14—	-C19	9 1 4173 (14)	
C4—C7		1.5085 (16)	C15—	-C16	1.3856 (18)	
C5—C6		1.4185 (14)	C15—	-H15	0.999	(9)
С5—Н5		0.998 (8)	C16—	-C17	1.406	6 (19)
C6—C8		1.4553 (14)	C16—	-H16	0.959	(19)
C7—H7A		1.003 (9)	C17—	-C18	1.384	8 (19)
С7—Н7С		0.999 (9)	C17—	-H17	0.989	(9)
С7—Н7В		1.001 (9)	C18—C19 1.3992 (16)		2 (16)	
С8—С9		1.5009 (14)	C18—	-H18	0.989	(9)
C8—N1—C10		126.73 (9)	H9B–	-С9—Н9С	105.9	(14)
C8—N1—H1N		110.7 (12)	N1—0	C10—C11	110.4	1 (9)
C10—N1—H1N		122.5 (12)	N1—0	C10—H10A	110.0	(9)
C19—N2—C12		108.56 (9)	C11—	-C10—H10A	110.7	(9)
C19—N2—H2N		122.2 (10)	N1—0	C10—H10B	107.8	(8)
C12—N2—H2N		128.2 (11)	C11—	-C10—H10B	108.8	(8)
O1—C1—C2		120.86 (10)	H10A	—С10—Н10В	109.1	(12)
O1—C1—C6		121.95 (9)	C13—	-C11—C10	113.4	5 (9)
C2—C1—C6		117.18 (10)	C13—	-C11—H11A	109.7	(8)
C3—C2—C1		121.13 (10)	C10—	-C11—H11A	106.7	(8)
С3—С2—Н2		122.2 (9)	C13—	-C11—H11B	110.9	(8)
C1—C2—H2		116.7 (9)	C10—	-C11—H11B	109.3	(8)
C2—C3—C4		122.25 (10)	H11A-		106.5	(12)
С2—С3—Н3		118.9 (9)	C13—	-C12—N2	110.3	4 (10)
C4—C3—H3		118.9 (9)	C13—	-C12—H12	129.6	(9)
C5—C4—C3		117.57 (10)	N2—0	С12—Н12	120.0	(9)
C5—C4—C7		121.88 (11)	C12—	-C13—C14	106.3	2 (9)

C3—C4—C7	120.53 (10)	C12—C13—C11	127.45 (10)
C4—C5—C6	122.15 (10)	C14—C13—C11	126.22 (10)
С4—С5—Н5	118.6 (8)	C15—C14—C19	119.18 (10)
С6—С5—Н5	119.2 (8)	C15—C14—C13	134.06 (10)
C5—C6—C1	119.72 (10)	C19—C14—C13	106.74 (9)
C5—C6—C8	120.70 (9)	C16-C15-C14	118.95 (11)
C1—C6—C8	119.53 (9)	C16—C15—H15	122.0 (9)
С4—С7—Н7А	112.8 (11)	C14—C15—H15	119.0 (9)
С4—С7—Н7С	113.0 (10)	C15—C16—C17	121.02 (12)
H7A—C7—H7C	102.6 (15)	C15—C16—H16	120.3 (10)
С4—С7—Н7В	112.3 (12)	C17—C16—H16	118.6 (10)
H7A—C7—H7B	109.7 (16)	C18—C17—C16	121.31 (11)
Н7С—С7—Н7В	105.8 (15)	C18—C17—H17	120.9 (10)
N1—C8—C6	118.11 (9)	С16—С17—Н17	117.8 (10)
N1—C8—C9	121.33 (9)	C17—C18—C19	117.69 (11)
C6—C8—C9	120.56 (9)	C17-C18-H18	121.3 (9)
С8—С9—Н9А	112.2 (11)	C19—C18—H18	121.0 (9)
С8—С9—Н9В	109.7 (11)	N2-C19-C18	130.14 (10)
Н9А—С9—Н9В	108.4 (15)	N2-C19-C14	108.02 (10)
С8—С9—Н9С	111.0 (10)	C18—C19—C14	121.84 (11)
Н9А—С9—Н9С	109.4 (15)		
O1—C1—C2—C3	-179.52 (10)	N2-C12-C13-C14	0.69 (12)
C6—C1—C2—C3	-0.33 (16)	N2-C12-C13-C11	-179.97 (10)
C1—C2—C3—C4	0.63 (17)	C10-C11-C13-C12	109.95 (13)
C2—C3—C4—C5	-0.39 (17)	C10-C11-C13-C14	-70.83 (14)
C2—C3—C4—C7	-179.08 (11)	C12-C13-C14-C15	178.40 (12)
C3—C4—C5—C6	-0.14 (16)	C11-C13-C14-C15	-1.0 (2)
C7—C4—C5—C6	178.53 (11)	C12-C13-C14-C19	-0.10 (12)
C4—C5—C6—C1	0.41 (16)	C11-C13-C14-C19	-179.45 (10)
C4—C5—C6—C8	177.68 (10)	C19—C14—C15—C16	-0.83 (17)
O1—C1—C6—C5	179.00 (9)	C13-C14-C15-C16	-179.19 (12)
C2—C1—C6—C5	-0.17 (15)	C14—C15—C16—C17	0.36 (19)
O1—C1—C6—C8	1.71 (16)	C15-C16-C17-C18	0.27 (19)
C2—C1—C6—C8	-177.47 (9)	C16-C17-C18-C19	-0.38 (18)
C10—N1—C8—C6	178.04 (10)	C12-N2-C19-C18	-179.07 (11)
C10—N1—C8—C9	-0.81 (17)	C12-N2-C19-C14	0.95 (12)
C5—C6—C8—N1	-179.09 (10)	C17-C18-C19-N2	179.90 (11)
C1—C6—C8—N1	-1.83 (15)	C17-C18-C19-C14	-0.12 (16)
C5—C6—C8—C9	-0.23 (15)	C15-C14-C19-N2	-179.29 (10)
C1—C6—C8—C9	177.03 (10)	C13-C14-C19-N2	-0.52 (12)
C8—N1—C10—C11	-154.48 (10)	C15—C14—C19—C18	0.73 (16)
N1-C10-C11-C13	-62.04 (13)	C13—C14—C19—C18	179.49 (10)
C19—N2—C12—C13	-1.04(13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N1—H1N···O1	0.90 (1)	1.66 (1)	2.487 (1)	151 (2)
N2—H2N···O1 ⁱ	0.89 (1)	1.93 (1)	2.807 (1)	168 (2)

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1

